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1. Calculation of coupling coefficient 40 

The coupling coefficient is related to the overlapping integral of mode fields 41 

between two near-neighbor waveguides. It also characterizes the transfer rate of light 42 

field energy between waveguides. The coupling coefficient can also be defined by the 43 

coupling length cL , i. e., the shortest distance required for the maximum proportional 44 

transfer of light field energy from one waveguide to another. The coupling coefficient 45 

can be calculated with 46 

 
2

2

24 c

C k
L


= −  (S1) 47 

where 1 2k k k = −   is the detuning in propagation constant[50]. We can get the 48 

coupling length cL   and the propagation constant k   of a single waveguide by 49 

simulating the light field in two waveguides with Lumerical FDTD-Solutions.  50 
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2. The tunneling probability predicted by LZ model 51 

    LZ model predicts the final states of the evolution process in the middle panel of 52 

Fig. 1d. It mainly depends on the speed of evolution which is strongly governed by the 53 

size of band gap k  and decay speed of band gap, i.e., the slope of the energy level 54 

  around degenerate point 0.75x = . The evolution speed here is set to be x L , 55 

where L   is the device length in Fig. 2a. The finial state is given by the following 56 

dynamical eigen equations[31,39]  57 

 
1 1
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x
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i
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 (S2) 58 

The finial state can be written as 1 1 2 2( ) ( )f S z S z  = + , where 1  and 2  59 

are the two states involved in LZ model. By solving Eq. (S2), we find the tunneling 60 

probability can be written as 
2[ ( ) 4 ]2

1 ( ) x
k L

S L e
  −

= , if the initial state is 2 . The LZ 61 

tunneling and LZ single-band evolution share equal probability when the device length 62 

is ( )
2

4 ln(2)x k    in the main text. This device length is regarded as the equal-63 

probability distance of single-band evolution and non-adiabatic tunneling.  64 
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3. The structural parameters of the device for edge-to-edge channel conversion 65 

 66 

Fig. S1 The structural parameters of the device for TESs edge-to-edge channel 67 

conversion. a, The top view of the eight-waveguide array. b, The width of four 68 

waveguides versus propagation distance in a unit cell with Harper model. The red, 69 

orange, blue and purple lines represent 1W  , 2W  , 3W   and 4W  , respectively. c, The 70 

width of four waveguides versus propagation distance in a unit cell with linear model. 71 

The red and blue lines correspond to 1W  and 4W , respectively, while 2W  and 3W  72 

share the same orange line. 73 

  74 
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4. Calculation of the topological invariants  75 

For calculating Zak phase of a 1D topological insulator and the Chern number of 76 

a 2D Chern insulator, the Berry connection is taken into account. In this section, we 77 

will detailly show how to use Wilson loop within the two-dimensional x y   plane to 78 

retrieve the Chern number.  79 

First, the classic 2D Berry connection is defined as[51] 80 

 ( ) ( ) ( )n n ni  = βa β β β  (S3) 81 

It is known that, the gauge transformation, i.e., ( ) ( ) i

n n e →β β  with random82 

[0,2 )   , doesn’t influence the eigen equations of the system, but which largely 83 

breaks the continuity of the wave function ( )n β  . The conventional method of 84 

calculating the Berry phase of the n -th band, 85 

 , ( ( ))B n n

FBZ

d =  a β S  (S4) 86 

is invalid. To simplify the calculation of Berry phase, we divide the integral area into 87 

P  small subblocks p  and use the Stokes formula to convert the surface integral of 88 

Berry curvature to a closed loop line integral of Berry connection in every block. Then 89 

(S4) can be rewritten as 90 

 ,

1

( )

p

P

B n n

p

d
= 

 = a β β  (S5) 91 

Until this step, we still cannot avoid the issue caused by the discontinuity of the wave 92 

function under the gauge transformation. We can then discretize Eq. (S5), and take 93 

complex exponent, resulting in a multiplication expression 94 

 ,

( ( ) ( ) )

1

n n

pB n

d
P

i

p

e e

 



 
 
 

−    

=


=

β β β

 (S6) 95 

If each divided subblock is small enough, i.e., P →  , the condition of Taylor 96 

expansion will be satisfied. With further segmentation of subblock boundaries to pQ  97 

parts, we can get 98 
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1 1

(1 ( ) ( ) )
p
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i

n q n q

p q

e d 
− 

= =

= +  β β β  (S7) 99 

Finally, the gradient operator can be represented in a differential form  100 

 , 1

1 1

( ) ( )
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p
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QP
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e d
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 (S8) 101 

Since the system is Hermitian, the Bloch eigenstates are orthogonal, i.e., 102 

( ) ( ) 1n q n q  =β β . Equation (S8) is further rewritten as 103 

 ,

1 2 1 1

1

( ( ) ( ) ... ( ) ( ) ... ( ) ( ) )B n

p

P
i

n n n q n q n Q n

p

e      
− 

+

=

= β β β β β β  (S9) 104 

The Wilson loop is just the multiplication expression along subblock boundaries. Note 105 

that Eq. (S9) is invariant under the gauge transformation with the existence of term 106 

( ) ( )n q n q β β  . Thus, one can calculate the Berry phase by use of concatenated 107 

multiplication of Wilson loops on discrete subblocks, rather than integral on continuous 108 

parameter space. The Chern number is thus retrieved as it is associated to the Berry 109 

phase with 110 

 ,

2

B n

nC



=  (S10) 111 

For 1D insulators, one can simply use numerical integration over the entire First 112 

Brillouin zone to retrieve Zak phase without requiring to discretize the parameter space 113 

 , ( ) ( )Z n n n

FBZ

i d    



 =

  (S11) 114 

In this work, we have used the method in this section to avoid the random phase related 115 

to the gauge transformation. The Chern number of our four-level Harper model in Fig. 116 

2d and the Zak phase of the one-dimensional insulators in Fig. 2b of the main text are 117 

calculated based on this section. It is worth noticing that the second and third band are 118 

degenerate in Fig. 2d. We cannot calculate the Chern numbers of them directly. But we 119 

can regard them as a single band with a common Chern number. We can first calculate 120 

the sum of the other band Chern numbers. The common Chern number of the two 121 

degenerate bands is the opposite number of this sum.  122 
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5. Bulk Momentum-Space Hamiltonian of four-level model 123 

We use the internal and external degrees of freedom m , n  to characterize the 124 

states of the multi-level chain with the following definition 125 

 126 

 ,m n m n=   (S12) 127 

where ,m n  denotes the state on the n -th site in the m -th unit cell, and is expressed 128 

by the Kronecker product of two vectors m  and n . m  and n  represent the 129 

m-dimensional and n-dimensional column vector, respectively. For a four-level chain, 130 

n  is equal to 4, yielding 131 

 
th

0,0,0,...,0, 1 ,0,...,0,0,0 , ( 1,2,..., )

M

m

m m M
−

 
= = 
 

 (S13) 132 

 
th

0, 1 ,0,0 , ( 1,2,3,4)
n

n n
−

 
= = 
 

 (S14) 133 

The real space bulk Hamiltonian can thus be written as Eq. (1) in the main text. 134 

Based on the definition mentioned above, the momentum-space Hamiltonian 135 

( )yH    can be extracted by Fourier transformation, which is essentially a linear 136 

transformation and can be regarded as the matrix row and column transformation. 137 

According to the Bloch theorem, the periodical potential field’s wavefunction can be 138 

decomposed into linearly superimposed plane waves (basic states). The Fourier 139 

transformation is only applied to the external degree of freedom[43], and the transition 140 

vector is given as  141 

 
1

1 2 4
, ( { , ,...,2 })y

M
im

y y

m

e m
M MM

  
  

=

=   (S15) 142 

The bulk momentum-space Hamiltonian can be obtained by the following Matrix 143 

transformation 144 

 
 , ' 1,2,3,4

ˆ( ) , , ' 'y y bulk y

n n

H n H n n n  


=   (S16) 145 

 146 



9 

 

 ( ) ( ) ( ) ( )y y y y yH k k    =  (S17) 147 

With the same definition of the parameters in Eq. (1), the bulk momentum-space 148 

Hamiltonian is transformed to  149 
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 (S18) 150 

The eigenvalues ( )yk   of ( )yH   make up the system’s Bloch band. The eigenstates 151 

( )n y   are used to calculate the topological invariants in Section 4. If the periodical 152 

detuning ( ) cos( / 2)n x b xk k k n  = + +  is exerted to modulate the one-dimensional 153 

model (see the main text), the bulk momentum-space Hamiltonian becomes a binary 154 

matrix function, corresponding to the x y   plane,  155 
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 (S19) 156 

By solving its eigenvalues, we can obtain the spectrum on the propagation constant 157 

versus x  and y  in the 2D parameter space in Fig. 2d.  158 
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6. Simulated edge-to-edge channel conversion efficiency of TESs 159 

 160 

Fig. S2 The simulated topological edge states (TESs) edge-to-edge channel 161 

conversion efficiency. a-d, Linear model in Fig. S1c with 10 μmL =  (a), 20 μmL =  162 

(b), 100 μmL =   (c), and 300 μmL =   (d). Red (blue) line represents the edge-to-163 

edge channel conversion efficiency of mode 3 (mode 2). 164 

 165 

The edge-to-edge channel conversion efficiency is defined as the ratio of the 166 

desired output mode energy to the total energy. As is shown in Fig. S2, the edge-to-edge 167 

channel conversion efficiencies are on the level about only 26% at the wavelength 168 

center 1.55μm =  when the device length is only 10 μmL = . If the device length is 169 

approaching to the equal-probability distance ( 16.9 μmcx =  ) with 20 μmL =  , the 170 

edge-to-edge channel conversion efficiencies increase to the level of 56% at the 171 

wavelength center 1.55μm = . It indicates almost the same probability of tunneling 172 

and adiabatic edge-to-edge channel conversion. The edge-to-edge channel conversion 173 

efficiencies maintain high levels over 93% in the wavelength range greater than 1.52 174 

μm at two studied device lengths of 100 μmL =  and 300 μmL =  (> 16.9 μmcx = ). 175 

The modes 2 and 3 obtain almost the same edge-to-edge channel conversion efficiencies, 176 
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indicating a bilateral and efficient edge-to-edge channel conversion. The overall edge-177 

to-edge channel conversion efficiency with linear mode ensures high edge-to-edge 178 

channel conversion efficiency under the adiabatic limit, demonstrating a good tolerance 179 

against the structural parameters. 180 

It is worth pointing out here, LZ channel converters can serve as wavelength-181 

dependent switches by tuning the operating wavelength to govern whether or not the 182 

field jumps between edges, when the device length L is less than or comparable to cx . 183 

For example, as the working wavelength is chosen to be 1.5 μm, the tunneling process 184 

dominates and most of light will propagate along one edge. In contrast, as the working 185 

wavelength approaches to 1.6 μm, most of the light energy goes through a Landau-186 

Zener single-band evolution, and can switch to the opposite edge.  187 

  188 
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7. Experimental details 189 

The experimental fabrication of the waveguide array was implemented by using a 190 

standard silicon-on-insulator wafer with a 220 nm-thick silicon layer, followed by E-191 

beam lithography and inductively coupled plasma etching. A layer of 2 μm-thick silica 192 

dioxide serves as the cladding layer on the silicon waveguide to improve the symmetry 193 

of the optical field and protect the silicon structures. 194 

 195 

7.1. Grating coupler 196 

 197 

Fig. S3 The silicon grating coupler for measurement. a, SEM image for section A or 198 

E in Fig. 4a. b, SEM image of the silicon couple-in/couple-out grating coupler with its 199 

cross section (c). The incident light illuminates the grating with angle of    with 200 

respect to the normal direction.  201 

 202 

The grating coupler is designed to couple into the silicon waveguide from the laser 203 

beam or couple out light energy that is received spectrometer and power meter. The 204 
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grating has a period of 640 nml = and a width of 12 μm, with a duty cycle of 0.5. The 205 

etching depth for the grating is with 100 nm, which is optimized for the maximum 206 

coupling efficiency. The incident angle   is chosen as the maximum power is detected 207 

by the power meter. The silicon waveguide is connected with the silicon grating, and 208 

its width is linearly changed from 12 μm to 340 nm or to 320 nm with a total distance 209 

of 540 μm.  210 
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7.2. Adiabatic coupler 211 

 212 

Fig. S4 The adiabatic coupler for section B in Fig. 4a. a-b, The top-view schematic 213 

of the adiabatic coupler for exciting the TESs: mode 2 (a) and mode 3 (b). c-d, SEM 214 

images of the starting sections: (c) and (d) correspond to (a) and (b), respectively. e, 215 

The waveguide width versus the propagation distance in (a). The red, orange, green, 216 

and blue lines denote 1W   ( 5W=  ), 2W   ( 3 6 7W W W= = =  ), 4W  , and 8W  . f, The 217 

waveguide width versus the propagation distance in (b). The red, orange, green, and 218 

blue lines denote 1W  , 2W   ( 3 6 7W W W= = =  ), 4 8W W=  , and 5W  . g, The off-axis 219 

distance d  of waveguide 1 (b) and waveguide 8 (a) versus the propagation distance.  220 
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 221 

The adiabatic coupler presented in Fig. S4 is used to gradually convert the silicon 222 

waveguide mode to the TESs for Section C in Fig. 4a. The off-axis distance d   is 223 

adiabatically modulated along the propagating distance (300 μm in length) to ensure 224 

the excitation of mode 2 (mode 3) with a high mode purity. The optimized structural 225 

parameters for the adiabatic coupler are shown in Figs. S4e-g, resulting in an excited 226 

mode 2 (mode 3) with a mode purity above 97% in simulation.   227 
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7.3. Measurement configuration 228 

 229 

Fig. S5 Details on measurement. a, Measurement configuration. b-d, SEM images of 230 

the silicon waveguide array for TESs conversion: The entire device involving the 231 

silicon waveguide array (b), The contrast waveguides in the absence of silicon 232 

waveguide array (c-d). 233 

 234 

Figure S5a presents the experimental setup for measuring the TESs conversion 235 

effect. The near infrared light is provided by an amplified spontaneous emission (ASE) 236 

broadband light source (Amonics ALS-CL-15-B-FA, spectral range from 1528 nm to 237 

1608 nm). The polarization beam splitter (PBS) and polarization controller (PC) are 238 

used to adjust the polarization of the incident light for mode matching with the grating 239 

coupler. The optical field after passing through the waveguide array is coupled out of 240 

the silicon waveguide and then collected by the optical power meter (AV633 4D) and 241 

spectrometer (YOKOGAWA AQ6370). The SEM images of the entire device involving 242 

the silicon waveguide array for mode 3 conversion (upper panel of Fig. S5b) and mode 243 
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2 conversion (lower panel of Fig. S5b) are presented in the upper and lower panels in 244 

Fig. S5b, respectively. Sections A and E are the grating couplers for coupling in and 245 

out of the waveguide energy, respectively. Section B corresponds to the adiabatic 246 

coupler for exciting the TESs, and section D represents the bus waveguide array for 247 

testing the edge-to-edge channel conversion effect. The contrast waveguides in Figs. 248 

S5c-d are designed to evaluate the additional loss generated by the grating coupler 249 

structure on both sides. The optical power at port 2 (port 3) 2I  ( 3I ) in the upper panel 250 

of Fig. S5b, is extracted by comparing the device losses between the port 2 (port 3) and 251 

the contrast waveguide in Fig. S5c (Fig. S5d). The optical power at port 2 (port 3) 2I  252 

( 3I ) in the lower panel of Fig. S5b, is extracted by comparing the device losses between 253 

the port 2 (port 3) and the contrast waveguide in Figs. S5d (Fig. S5c).  254 
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8. The robustness against the fabrication errors 255 

8.1. Theoretical analysis 256 

We note the robustness of a system against perturbation in most previous works 257 

was studied by use of Anderson perturbation appearing at random sites. For practical 258 

preparation of nanoscale structures, the fabrication error largely comes from the pattern 259 

technologies, and high-resolution E-beam lithography is mostly used for the current 260 

nanoscale silicon waveguide array[52]. As the height of the silicon waveguide is fixed, 261 

its perturbation in fabrication process is decided by the holistic width perturbation of 262 

waveguides, rather than the perturbation at random sites[53-55]. Here, we resort to 263 

directly studying the topological transition points due to the limited waveguide lattice 264 

used in Fig. 2a. 265 
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 266 

Fig. S6 The topological invariant of four Bloch bands as a function of the coupling 267 

coefficients. a, 12C   is varied with fixed 23 34 41 00.1C C C k= = =  . b, 23C   is varied 268 

with fixed 12 34 41 00.1C C C k= = =  . c, 34C   is varied with fixed 269 

12 23 41 00.1C C C k= = = . d, 41C  is varied with fixed 12 23 34 00.1C C C k= = = . 270 

 271 

In the main text, the Chern numbers of the Harper waveguide lattice in Fig.2a has 272 

been calculated as all the coupling coefficients are fixed at 273 

12 34 41 41 00.1C C C C k= = = = . We take the coupling coefficients, 12C , 23C , 34C , and 274 

41C  as the independent variables to calculate the topological phase transition point of 275 
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the Harper waveguide lattice. Figures S6a-d, respectively show the topological phase 276 

suffers from a process transforming from non-trivial phase to trivial phase as each 277 

coupling coefficient is individually changed. The topological phase transition points are 278 

identical and very close to zero with 12 00.036C k=  (Fig. S6a), 23 00.036C k=  (Fig. 279 

S6b), 34 00.036C k=   (Fig. S6c), 41 00.036C k=   (Fig. S6d). All the coupling 280 

coefficients in our system can be varied within a wide range to support TESs. The 281 

topological phase transition point indicates the critical point in ,( mod 4) 1n nC +   axis 282 

between trivial phase and non-trivial phase. In our case, the coupling coefficients are 283 

stronglely related to the gap distance beween the waveguides, ,( mod 4) 1n ng + , in the array. 284 

The presented four-level system with Harper waveguide lattice can support TESs 285 

evolution even if ,( mod 4) 1n nC +  are varied within a wide range (> 00.036 k ), allowing for 286 

a wide range of ,( mod 4) 1n ng +  in the design.  287 
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8.2. Experimental validation 288 

We have experimentally revealed the device robustness against the structural 289 

parameters by tuning the gap between the unit cell, 41g . 290 

 291 

Fig. S7 The experimental results for testing robustness. The simulated and 292 

experimental power contrast ratio 2 3 →  , 3 2 →   versus light wavelength with  293 

41 50 nmg =   (a) and 41 50 nmg = −   (b), when L   is kept at 300 μm. The red 294 

circles (lines) and blue circles (lines) represent the estimated 2 3 →  and 3 2 →  from 295 

the experiment (simulation), respectively. 296 

 297 

As 41g   grows, 41C   undergoes a gradual reduction, and the associated 298 

localization of TESs is weakened. Both 2 3 →   and 3 2 →   show a slight reduction 299 

tendency than those with 41 0g =  (see more details on Fig. 4 in the main text), but 300 

are kept at a relatively high level (Fig. S7a). As 41g  reduces, 2 3 →  and 3 2 →  show 301 

a reverse tendency (Fig. S7b), and are higher than those with 41 0g =   (see more 302 

details on Fig. 4 in the main text). The edge-to-edge channel conversion effect of the 303 

TESs can tolerate the perturbation up to 41 41 42%g g = .  304 
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9. The topological phase transition point in N-level Harper model 305 

The Harper model can be extended to N -level condition. The Bloch Hamiltonian 306 

can be written as 307 
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(S20) 309 

where ( ) cos( 2 )n x b xk k k n N  = + +   is the onsite energy. The modulation 310 

benchmark bk  and modulation amplitude k  have been mentioned in the main text. 311 

00.1c k=  and 1NC  are the inter-unit and cross-unit hopping strengths, respectively. 312 

1NC  is taken as the independent variable to analyze the topological phase transition 313 

point from the non-trivial phase to the trivial phase. 314 

 315 

Fig. S8 The topological phase transition points in N-level Harper model as 1NC  is 316 

varied. The x axis labels the level number of Harper model. The y axis is the topological 317 

phase transition point normalized to 0k , the propagation constant of light in void m 318 

mentioned in main text. 319 
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 320 

We have calculated the topological phase transition points with different level 321 

number N . Figure S8 shows that the topological phase transition point is closer to the 322 

parameter origin as N   is enhanced which indicate a wider range of 1Ng  , the gap 323 

distance crossing unit-cell, is allowed for topological protection. The result 324 

demonstrates the higher-level Harper model can support TESs in a wider range of cross-325 

unit coupling coefficient 1NC  compared to that in three or four level Harper model. In 326 

other word, higher-level Harper model promises even stronger robustness. 327 

 328 


